Phenotypic consequences of beta1-tubulin expression and MAP4 decoration of microtubules in adult cardiocytes.

نویسندگان

  • Masaru Takahashi
  • Hirokazu Shiraishi
  • Yuji Ishibashi
  • Kristie L Blade
  • Paul J McDermott
  • Donald R Menick
  • Dhandapani Kuppuswamy
  • George Cooper
چکیده

In pressure-overload cardiac hypertrophy, microtubule network densification is one cause of contractile dysfunction. Cardiac transcriptional upregulation of beta1-tubulin rather than the constitutive beta4-tubulin and of microtubule-associated protein (MAP)4 accompanies hypertrophy, with extensive microtubule decoration by MAP4. Because MAP4 stabilizes microtubules, and because the isoform-variable carboxy terminus of beta-tubulin binds to MAP4, we wished to determine whether one or both of these proteins has etiologic significance for cardiac microtubule network densification. Recombinant adenoviruses encoding beta1-tubulin, beta4-tubulin, and MAP4 were used to infect isolated cardiocytes. Overexpressed MAP4 caused a shift of tubulin dimers to the polymerized fraction and formation of a dense, stable microtubule network. Overexpressed beta1- or beta4-tubulin had neither any independent effect on these variables nor any effect additive to that of simultaneously overexpressed MAP4. Results from transgenic mice with cardiac overexpression of beta1-tubulin or MAP4 were confirmatory, but unlike the effects of brief adenovirus-mediated MAP4 overexpression in isolated cardiocytes, MAP4 transgenic hearts showed a marked increase in total alpha- and beta-tubulin. Thus MAP4 overexpression caused increased tubulin expression, formation of stable microtubules, and altered microtubule network properties, such that MAP4 upregulation may be one cause for the dense, stable microtubule network characteristic of pressure-overloaded, hypertrophied cardiocytes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phenotypic consequences of 1-tubulin expression and MAP4 decoration of microtubules in adult cardiocytes

Takahashi, Masaru, Hirokazu Shiraishi, Yuji Ishibashi, Kristie L. Blade, Paul J. McDermott, Donald R. Menick, Dhandapani Kuppuswamy, and George Cooper IV. Phenotypic consequences of 1-tubulin expression and MAP4 decoration of microtubules in adult cardiocytes. Am J Physiol Heart Circ Physiol 285: H2072–H2083, 2003. First published July 10, 2003; 10.1152/ajpheart.00396. 2003.—In pressure-overloa...

متن کامل

Site-specific microtubule-associated protein 4 dephosphorylation causes microtubule network densification in pressure overload cardiac hypertrophy.

In severe pressure overload-induced cardiac hypertrophy, a dense, stabilized microtubule network forms that interferes with cardiocyte contraction and microtubule-based transport. This is associated with persistent transcriptional up-regulation of cardiac alpha- and beta-tubulin and microtubule-stabilizing microtubule-associated protein 4 (MAP4). There is also extensive microtubule decoration b...

متن کامل

Microtubule-dependent distribution of mRNA in adult cardiocytes.

Synthesis of myofibrillar proteins in the diffusion-restricted adult cardiocyte requires microtubule-based active transport of mRNAs as part of messenger ribonucleoprotein particles (mRNPs) to translation sites adjacent to nascent myofibrils. This is especially important for compensatory hypertrophy in response to hemodynamic overloading. The hypothesis tested here is that excessive microtubule...

متن کامل

MAP4 Counteracts Microtubule Catastrophe Promotion but Not Tubulin-Sequestering Activity in Intact Cells

Microtubules are polar polymers that continually switch between phases of elongation and shortening, a property referred to as dynamic instability. The ubiquitous microtubule associated protein 4 (MAP4) shows rescue-promoting activity during in vitro assembly of microtubules (i.e., promotes transitions from shortening to elongation), but its regulatory role in intact cells is poorly defined. He...

متن کامل

Microtubule Stabilization in Pressure Overload Cardiac Hypertrophy

Increased microtubule density, for which microtubule stabilization is one potential mechanism, causes contractile dysfunction in cardiac hypertrophy. After microtubule assembly, alpha-tubulin undergoes two, likely sequential, time-dependent posttranslational changes: reversible carboxy-terminal detyrosination (Tyr-tubulin left and right arrow Glu-tubulin) and then irreversible deglutamination (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 285 5  شماره 

صفحات  -

تاریخ انتشار 2003